题目连接:http://codeforces.com/contest/832/problem/C
n people are standing on a coordinate axis in points with positive integer coordinates strictly less than 106. For each person we know in which direction (left or right) he is facing, and his maximum speed.
You can put a bomb in some point with non-negative integer coordinate, and blow it up. At this moment all people will start running with their maximum speed in the direction they are facing. Also, two strange rays will start propagating from the bomb with speed s: one to the right, and one to the left. Of course, the speed s is strictly greater than people's maximum speed.
The rays are strange because if at any moment the position and the direction of movement of some ray and some person coincide, then the speed of the person immediately increases by the speed of the ray.
You need to place the bomb is such a point that the minimum time moment in which there is a person that has run through point 0, and there is a person that has run through point 106, is as small as possible. In other words, find the minimum time moment t such that there is a point you can place the bomb to so that at time moment t some person has run through 0, and some person has run through point106.
The first line contains two integers n and s (2 ≤ n ≤ 105, 2 ≤ s ≤ 106) — the number of people and the rays' speed.
The next n lines contain the description of people. The i-th of these lines contains three integers xi, vi and ti (0 < xi < 106, 1 ≤ vi < s,1 ≤ ti ≤ 2) — the coordinate of the i-th person on the line, his maximum speed and the direction he will run to (1 is to the left, i.e. in the direction of coordinate decrease, 2 is to the right, i.e. in the direction of coordinate increase), respectively.
It is guaranteed that the points 0 and 106 will be reached independently of the bomb's position.
Print the minimum time needed for both points 0 and 106 to be reached.
Your answer is considered correct if its absolute or relative error doesn't exceed 10 - 6. Namely, if your answer is a, and the jury's answer is b, then your answer is accepted, if .
2 999 400000 1 2 500000 1 1
500000.000000000000000000000000000000
2 1000 400000 500 1 600000 500 2
400.000000000000000000000000000000
In the first example, it is optimal to place the bomb at a point with a coordinate of 400000. Then at time 0, the speed of the first person becomes 1000 and he reaches the point 106 at the time 600. The bomb will not affect on the second person, and he will reach the 0point at the time 500000.
In the second example, it is optimal to place the bomb at the point 500000. The rays will catch up with both people at the time 200. At this time moment, the first is at the point with a coordinate of 300000, and the second is at the point with a coordinate of 700000. Their speed will become 1500 and at the time 400 they will simultaneously run through points 0 and 106.
题意:改出N个人的初始始方向和速度,然后让你放一颗炸弹在某个整数位置,炸弹会在最开始爆炸,并且造成往左往右的两个光束,当光束追上人(有相同的方向)的时候人会加上光的速度,问你把炸弹放在某一个位置使得在往左往右都跑出至少一人的时间?
题解:二分时间,每次判断能否在规定时间能否左右都跑出至少一人,
#include#include using namespace std ;typedef long long ll;const int maxn=1e5+5; int s,n; struct node{ int p,v,f; }a[maxn]; bool judge(double lim){ bool left=false,right=false; double left_l=1e6,left_r=0,right_l=1e6,right_r=0; for(int i=0;i 0)continue; left=true; if(a[i].p-a[i].v*lim<=0.0) { left_l=0;left_r=1e6; continue; } double rr=floor((s-a[i].v)*(((a[i].v+s)*lim-a[i].p)/(double)s)+a[i].p);//解三元一次方程就可以得到最大位置 left_r=max(left_r,rr); left_l=min(left_l,(double)a[i].p); } else { if(a[i].p+(s+a[i].v)*lim<1e6)continue; right=true; if(a[i].p+a[i].v*lim>=1e6) { right_l=0,right_r=1e6; continue; } double LL=ceil(a[i].p+(a[i].v-s)*(1e6-a[i].p-(a[i].v+s)*lim)/(-s));//同上 right_l=min(right_l,LL); right_r=max(right_r,(double)a[i].p); } } if(!left||!right)return false; if((left_l>left_r)||(right_l>right_r)) return false; if(right_r left_r)return false; else return true; } int main(){ scanf("%d %d",&n,&s); for(int i=0;i